ویدیو
در حال خواندن
تاثیر عدد رینولدز بر حرکت جریان سیالات
0

تاثیر عدد رینولدز بر حرکت جریان سیالات

توسط میثم نجفی ارشادی۱۱ آبان, ۱۳۹۶

عدد رینولدز ( Reynolds number) کمیتی بدون یکا است که در مکانیک شاره‌ ها نسبت نیروی لختی به لزجی را نشان می‌دهد. عدد رینولدز، یک عدد بی بعد است که علاوه بر اینکه نسبت نیروهای اینرسی به ویسکوزیته را بیان میکند ، درجه ی اهمیت نسبی این دو نیرو را به صورت کمی نشان می دهد. این عدد در زمان آنالیز ابعادی مسائل دینامیک سیال، به طور مکرر استفاده شده و می تواند به منظور بررسی تشابه دینامیکی بین جریان های مختلف استفاده شود. 

در حوزه ی مکانیک سیالات، مرسوم است که از معادلات بی بعد شده استفاده کنیم. به این منظور متغیرها را با هم ترکیب کرده و از آنها به عنوان ضرایب عبارات دیفرانسیلی که با انتخاب مقیاس های مناسب، آنها را بی بعد کرده و از مرتبه واحد قرار داده ایم، استفاده می کنیم. به این ترتیب هم می توان ترم های موجود در معادله را با توجه به ضرایب آنها با هم مقایسه نموده و هم پارامترهای موجود در مسأله را کاهش داد.

رابطه عدد رینولدز به صورت زیر تعریف میشود :

 چگالی سیال،
v سرعت متوسط جریان سیال،
L  یک طول مشخصه میدان جریان
μ ویسکوزیته سیال

نکته ی قابل توجه در بررسی عدد رینولدز، انتخاب طول مشخصه است. این انتخاب باید به نحوی باشد که بتواند مقیاس مناسبی برای بررسی دینامیک جریان باشد. به عنوان مثال در بررسی جریان آب در لوله، دو بعد طولی وجود دارد: ۱- طول لوله ۲- قطر لوله. اگر طول مشخصه را برابر با طول لوله در نظر بگیریم، برای طول های مختلف لوله، اعداد رینولدز متفاوتی بدست می آیند که بیان گر تغییر جریان در طول لوله می باشد. در صورتی که واضح است پروفیل جریان آب در لوله، پس از عبور از ناحیه ی گذرای ورودی، ثابت شده و در طول لوله تغییر نمی کند. لذا مقیاس مناسب قطر لوله بوده و طول آن مقیاس مناسبی نیست.

کاربرد مهم این عدد در تعیین آرام یا آشفته بودن جریان شاره است. این عدد به افتخار فیزیک‌دان بریتانیایی ازبورن رینولز نام‌گذاری شده‌است.

در انیمیشن زیر، اثرات افزایش عدد رینلودز روی رژیم جریان و تشکیل گردابی ها پشت یک استوانه نشان داده شده است. پدیده فوق با نام پدیده خیابان فون کارمن شناخته میشود

همان طور که میدانیم یکی از انواع تقسیم بندی جریان، حرکت لایه ها می باشد که بر اساس سه نوع جریان، قابل تفکیک است:

      – جریان آرام (Laminar)

      – جریان انتقالی (Transition)

      – جریان آشفته (Turbulent)

در شکل زیر انواع رژیم های جریان سیال عبوری از روی یک صفحه تخت نشان داده شده است:

جریان آرام جریانی است که به صورت لا یه ای حرکت می کند که هر لایه به آرامی به لایه مجاور خود فقط به دلیل تبادل مولکولی اندازه حرکت می لغزد هر گونه تمایل جهت ناپایدار و اغتشاش و تلاطم بوسیله نیروهای برشی از لزجت که در مقابل حرکت نسبی لایه های سیال مقاومت می کند خنثی وکاملا ضعیف مشود ولی در جریان در هم حرکت ذرات سیال در هم بوده وتبادل اندازه حرکت به دلیل حرکات متقاطع صورت می گیرد.

ماهیت جریان یا به عبارت دیگر آرام یا در هم بودن وموقعیت نسبی آن در یک مقیاس که نشان دهنده اهمیت نسبی جریان درهم به جریان آرام است به وسیله عدد رینولدز نشان داده می شود رینو لدز با تکرار آزمایشات خود در حالت جریان آشفته درون لوله شیشه ای دریافت که با کاهش R تا مقدار کمتر از ۵۰۰ یا تغییر سرعت جریان  تبدیل به جریان آرام میگردد.

در جریان آرام یا لایه‌ای، ذرات سیال مسیرهایی منظم و هموار را طی می‌کنند به طوری که هر لایه به آرامی روی لایه مجاور خود می لغزد. این جریان از قانون لزجت نیوتن و یا تعمیم آن یعنی قانون استوکس پیروی می کند. در این جریان هر گونه گرایش به آشفتگی توسط نیروی اصطکاک مستهلک می‌شود.

در وضعیتی که ۱- لزجت کم ۲- سرعت جریان زیاد ۳- طول مشخصه زیاد (مثلا قطر لوله) باشد، جریان پایداری خودش را حفظ نکرده و به جریان آشفته تبدیل می‌شود. در این جریان ذرات سیال به علت انرژی جنبشی بالا مسیرهای نامنظمی را طی می‌کنند و با برخورد به یکدیگر سبب انتقال انرژی می‌شوند.

ویژگی جریان‌های آشفته:

۱- وجود گردابه در سیال‌ها نشان دهنده آشفته بودن جریان است.

۲- در جریان‌های آشفته اتلاف شدید انرزی جنبشی وجود دارد.

۳- از دیگر ویژگی‌های جریان‌های آشفته اختلاط شدید است؛ مثلا اگر ما جوهر در داخل جریان آشفته بریزیم سریع حل می‌شود در صورتی که اگر همین جوهر را داخل جریان لایه‌ای بریزیم خیلی آرام حل می‌گردد.

کاربرد عدد رینولدز

یکی از کاربردهای مهم عدد رینولدز، تعیین آرام یا آشفته بودن جریان است. اگر عدد رینولدز از مقدار خاصی کم‌تر باشد جریان آرام و اگر بیش‌تر باشد آشفته‌است. این مقدار خاص، عدد رینولدز بحرانی نام دارد. عدد رینولدز بحرانی برای جریان‌های مختلف به صورت تجربی اندازه‌گیری می‌شود. برای مثال، عدد رینولدز بحرانی برای جریان داخل یک لوله ۲۳۰۰ است. در این حالت، طول مشخصهٔ d  قطر لوله‌است.

در کتاب مکانیک سیالات فرانک ام. وایت در مورد عدد رینولدز و کاربرد آن در تعیین جریان چنین امده است :

با افزایش عدد رینولدز جریان هموار لایه ای تبدیل به جریان افت و خیزی متلاطم می شود . این فرآیند که آن را گذار نامند ،به عواملی مانند زبری سطح و آشفتگی جریان سیال وابسته است . اما مهم ترین عامل عدد رینولدز می باشد . جریان لایه ای دارای آشفتگی های کوچکی است که سریعا از بین می رود.

در حالت گذار افت و خیز ها شروع میشوند . با افزایش عدد رینولدز جریان کاملا به صورت متلاطم در می آید ، در جریان متلاطم پایا ، سرعت جریان حول یک مقدار میانگین پایا به صورت تصادفی نوسان می کند ، این نوسان ها حدود ۱ تا ۲۰ درصد سرعت متوسط هستند ، که یک طیف پیوسته را تشکیل می دهند . ( مثلا، در یک تونل باد معمولی با عدد رینولدز زیاد ، فرکانس این نوسان ها در گستره ۱ تا ۱۰۰۰۰ هرتز است )

همانطور که قبلا هم اشاره شد عدد رینولدز پارامتر اصلی حاکم بر فرآیند گزار است .
در ادامه نتایج حاصل از آزمایشات بر گستره تغییرات عدد رینولدز برای شرایط مختلف جریان را بررسی می کنیم.

طول مشخصهٔ آشفتگی
یکی دیگر از کاربردهای عدد رینولدز، تعیین کوچک‌ترین طول مشخصه در یک جریان آشفته‌است. در جریان آشفته، طول مشخصه به معنی فاصله‌ای است که بین متغیرهای جریان مثل سرعت یا فشار همبستگی وجود دارد. اما چون این همبستگی‌ها هم‌بسامد نیستند، یک جریان آشفته طول‌های مشخصهٔ متفاوتی خواهد داشت. طول‌های مشخصهٔ بزرگ متناظر با بسامدهای پایین و طول‌های مشخصهٔ کوچک متناظر با بسامدهای بالا هستند.

اگر بزرگ‌ترین طول مشخصهٔ یک جریان L و کوچک‌ترین طول مشخصهٔ آن l  باشد، قانون تعادل کولموگورف می‌گوید که در عددهای رینولدز بالا:

با استفاده از این رابطه می‌توان کوچک‌ترین طول مشخصهٔ جریان آشفته را به دست آورد.

عدد رینولدز به عنوان پارامتر تشابهی
در کاربردهای مهندسی از عدد رینولدز به عنوان یک پارامتر تشابهی هم استفاده می‌شود. برای مثال، وقتی یک مدل کوچک از یک هواپیما در تونل باد مورد آزمایش قرار می‌گیرد، برای این که نتایج تونل باد قابل تعمیم به شرایط واقعی باشد، عدد رینولدز مدل و هواپیمای واقعی باید برابر باشد.

 تاثیر عدد رینولدز و زاویه شیب سطح بر رفتار قطرات در جریان روی سطح شیب دار در نسبت های چسبندگی بالا

این موضوع مهم که به تازگی توسط دپارتمان مهندسی مکانیک دانشگاه صنعتی اصفهان پژوهش و بررسی شده است به طور خلاصه به صورت زیر بیان می شود  :

تاثیر عدد رینولدز و زاویه شیب سطح بر رفتار قطرات معلق در جریان روی سطح شیب دار در نسبت های چسبندگی بالا برای اعداد رینولدز غیر صفر به صورت عددی مطالعه شده است. جریان بر روی سطح شیب دار تنها به دلیل شتاب گرانش وجود دارد و هیچ گونه گرادیان فشاری در راستای جریان وجود ندارد. مطالعات انجام شده حاکی از آن است که با افزایش عدد رینولدز قطراتی که نزدیک کف کانال یا سطح آزاد هستند به سمت مرکز کانال مهاجرت می کنند و فاصله تعادلی قطرات از دیواره کانال افزایش می یابد. انرژی اغتشاشی نیز افزایش می یابد. افزایش زاویه شیب سطح نسبت به افق تاثیر مشابه افزایش عدد رینولدز دارد. با افزایش زاویه شیب سطح نسبت به افق، قطرات نزدیک کف کانال یا سطح آزاد به سمت مرکز کانال مهاجرت می کنند، فاصله تعادلی قطرات از دیواره کانال افزایش می یابد و انرژی اغتشاشی نیز افزایش می یابد.

برای آموزش کامل مفهوم عدد رینولدز ویدیو های زیر را تماشا کنید

منابع :

Fluid Mechanics 8th Edition-Frank M. White

Introduction to Fluid Mechanics 9th Edition-Alan T. McDonald and Robert Fox

A Numerical Study of Effect of Reynolds Number and Inclination Angleon the Behavior of Drops- M. J. Aberuee and S. Mortazavi

واکنش شما چیست؟
I like it
75%
interested
25%
Hate it
0%
What
0%
درباره نویسنده
میثم نجفی ارشادی

دانشجوی مهندسی مکانیک

پاسخ بدهید